Evolutionary Multi-Objective Optimization Without Additional Parameters
نویسنده
چکیده
The present-day evolutionary multi-objective optimization (EMO) algorithms had a demonstrated history of evolution over the years. The initial EMO methodologies involved additional niching parameters which made them somewhat subjective to the user. Fortunately, soon enough parameter-less EMO methodologies have been suggested thereby making the earlier EMO algorithms unpopular and obsolete. In this paper, we present a functional decomposition of a viable EMO methodology and discuss the critical components which require special attention for making the complete algorithm free from any additional parameter. A critical evaluation of existing EMO methodologies suggest that the elitist non-dominated sorting GA (NSGA-II) is one of EMO algorithms which does not require any additional implicit or explicit parameters other than the standard EA parameters, such as population size, operator probabilities, etc. This parameter-less property of NSGA-II is probably the reason for its popularity to most EMO studies thus far.
منابع مشابه
An Approach to Reducing Overfitting in FCM with Evolutionary Optimization
Fuzzy clustering methods are conveniently employed in constructing a fuzzy model of a system, but they need to tune some parameters. In this research, FCM is chosen for fuzzy clustering. Parameters such as the number of clusters and the value of fuzzifier significantly influence the extent of generalization of the fuzzy model. These two parameters require tuning to reduce the overfitting in the...
متن کاملPareto Optimal Design Of Decoupled Sliding Mode Control Based On A New Multi-Objective Particle Swarm Optimization Algorithm
One of the most important applications of multi-objective optimization is adjusting parameters ofpractical engineering problems in order to produce a more desirable outcome. In this paper, the decoupled sliding mode control technique (DSMC) is employed to stabilize an inverted pendulum which is a classic example of inherently unstable systems. Furthermore, a new Multi-Objective Particle Swarm O...
متن کاملAutonomous Underwater Vehicle Hull Geometry Optimization Using a Multi-objective Algorithm Approach
Abstarct In this paper, a new approach to optimize an Autonomous Underwater Vehicle (AUV) hull geometry is presented. Using this methode, the nose and tail of an underwater vehicle are designed, such that their length constraints due to the arrangement of different components in the AUV body are properly addressed. In the current study, an optimal design for the body profile of a torpedo-shaped...
متن کاملApplying evolutionary optimization on the airfoil design
In this paper, lift and drag coefficients were numerically investigated using NUMECA software in a set of 4-digit NACA airfoils. Two metamodels based on the evolved group method of data handling (GMDH) type neural networks were then obtained for modeling both lift coefficient (CL) and drag coefficient (CD) with respect to the geometrical design parameters. After using such obtained polynomial n...
متن کاملMulti-objective Optimization of a Solar Driven Combined Power and Refrigeration System Using Two Evolutionary Algorithms Based on Exergoeconomic Concept
This paper deals with a multi-objective optimization of a novel micro solar driven combined power and ejector refrigeration system (CPER). The system combines an organic Rankine cycle (ORC) with an ejector refrigeration cycle to generate electricity and cold capacity simultaneously. Major thermodynamic parameters, namely turbine inlet temperature, turbine inlet pressure, turbine back pressure, ...
متن کامل